图像质量评价的几种方法
图像信息相对于其它信息有着无可比拟的优点,因此对图像信息进行合理处理成为各领域中不可或缺的手段,在图像处理的时候如何评价图像质量就变得尤为重要。在图像的获取、处理、传输和记录的过程中,由于成像系统、处理方法、传输介质和记录设备等不完善,加之物体运动、噪声污染 等原因,不可避免地带来某些图像失真和降质,这给人们认识客观世界、研究解决问题带来很大的困难。
比如,在图像识别中,所采集到的图像质量直接影响识别结果的准确性和可靠性;又如,远程会议和视频点播等系统受传输差错、网络延迟等不利因素影响, 都需要在线实时的图像质量监控,以便于服务提供商动态地调整信源定位策略,进而满足服务质量的要求;在军事应用方面,战场监视和打击评估的效果也取决于无 人机等航拍设备所采集到的图像或视频的质量。因此,图像质量的合理评估具有非常重要的应用价值。
从有没有人参与的角度区分,图像质量评价方法有主观评价和客观评价两个分支。主观评价以人作为观测者,对图像进行主观评价,力求能够真实地反映人的视觉感知;客观评价方法借助于某种数学模型,反映人眼的主观感知,给出基于数字计算的结果。
1.图像质量的主观评价:
主观评价只涉及人作出的定性评价,它以人为观察者,对图像的优劣作出主观的定性评价。对于观察者的选择一般考虑未受训练的“外行”或者训练有素的“内 行”。该方法是建立在统计意义上的,为保证图像主观评价在统计上有意义,参加评价的观察者应该足够多。主观评价方法主要可分为两种:绝对评价和相对评价。
2.绝对评价
所谓绝对评价,是由观察者根据自己的知识和理解,按照某些特定评价性能对图像的绝对好坏进行评价。通常,图像质量的绝对评价都是观察者参照原始图像对待定 图像采用双刺激连续质量分级法(Double Stimulus Continuous Scale,DSCQS),给出一个直接的质量评价值。具体做法是将待评价图像和原始图像按一定规则交替播放持续一定时间给观察者,然后在播放后留出一定 的时间间隔供观察者打分,*后将所有给出的分数取平均作为该序列的评价值,即该待评图像的评价值。国际上也对评价尺度做出了规定,对图像质量进行等级划分 并用数字表示,也称为图像评价的5分制“全优度尺度”。(见表1.1)
3.相对评价
相对评价中没有原始图像作为参考,是由观察者对一批待评价图像进行相互比较,从而判断出每个图像的优劣顺序,并给出相应的评价值。通常,相对评价采用单刺 激连续质量评价方法(Single Stimulus Continuous Quality Evaluation,SSCQE)。具体做法是,将一批待评价图像按照一定的序列播放,此时观察者在观看图像的同时给出待评图像相应的评价分值。相对于 主观绝对评价,主观相对评价也规定了相应的评分制度,称为“群优度尺度”(见表1.2)。
4.图像质量客观评价
图像质量客观评价的基本目标是设计能准确和自动感知图像质量的计算模型。其终极目标是希望用计算机来代替人类视觉系统去观看和认知图像。在国际上, 图像质量客观评价通常是通过测试多个影响影像质量的因素的表现,并通过计算模型获得图像质量量化值与人类主观观测值一致性的好坏来评估的。美国的 Imatest和法国的DxO analyzer就是其中比较出名的图像质量客观评价系统。
Imatest和DxO analyzer有异曲同工之处,都是将影像质量评测拆分成多个测试项目,分别对每个项目进行测试、打分。两者相比,DxO analyzer的测试项目会稍微全面一些。
无论是Imatest还是DxO analyzer,两个测试系统都是通过“测试卡+光源环境+测试软件=测试结果”的模式。通过各种各样的测试卡和光源,在实验室中模拟各种环境,再把成像结果输入软件系统,由系统自动分析,最后得出结果。